fA)in
DOC SearCh PrOJeCt —'ﬁ realize your ideas

Handover Document

of
Qualee Doc Search Pilot Project

by
Hung Nguyen

hung.nguyenvan@inapps.net

2020.10.08 | Version 1.1

ndinapps

realize your ideas

Doc Search Project

Table of Contents

I. INSTALLATION OF THE PROJECTccioiirrrireeeeirrereseeeeeeateeteesessesesestessstetesesssesesesesenessssssesesesenesensasnsnns 3
1. Setting Up Services 0n AWS CONSOle.........oiiiiiiniiiiiiiiciicic e ssenes 3

2. Configuration of the Project’s BaCKeNd..........ccccciiirnririeeiiiireeeeeeecectreeeesee e seeessseseens 6

3. Configuration of the project’s froNtend..........cccoccioirrieerereicirirreeee ettt eeees 7

II. PROJECT IMPLEMENTATION ON AWSootiiiiiiirrrrtneeereenettetetseesesesesesesesssesassesssesesesessassesssssssaesessasssssssses 9
1. Deploying the backend system to AWS Lambda and API Gateway........c.cccceceeereverereneeneeneeeereseeeereneeeenenees 9

2. Deploy the frontend system to AWS S3 as a StatiC WEDSITEc.ccceueeverveererieererererieenesienesesreseseseeneseeesessenes 10

3. Set a cronjob in AWS Lambda and CloudWatch Events to run every 60 seconds..........cccceceuruiininiicnienens 1
III. PROCESSING FILE IN THE BACKGROUND BY BACKENDoovtriiiiieiiieeeeneerereneeneeeeseeeeseneneseeessessnens 13
1. Detecting and Extracting Written Texts From File By AWS Textract.......ccoccvievniiniiinicnniciniccnees 13

2. Getting English Meaning of Word/Phrase Entities by AWS Comprehend...........cocceevcueuneecrnenenceceneceeenenees 16

3. Management of Extraction Outputs by AWS DynamoDBi........c.cccocvrerinnenineninneerneeseseereseeseeneseseenens 16

4. Adding Data to ElasticSearch SEIVICE ...t 18
IVLUSAGES. . ..ottt e e ettt st st s sttt bt a e nene 20
1. ACCESS WWED ADP .ttt ettt ettt et a st s e st st et et et e st e sessesat et e sesat e st enteat et et e sesseeabensesessaeneenten 20

2. Uploading A NeW DOCUIMIEIILcc.cceruerterereerieirreeiteeetsseeretesessetesesseeeseesteseseestesessentesensentesessessentesesentesesensesensen 20

3. Frontend Process of Uploading @ File.........ccoviiriiernnineeeereeerieerenee sttt et sse st sesessenens 22

4. Uploading a File with treating dUPLICALEScccveerererererieeieeireererteeereereseste e reeseesee e e eses s esessenes 23

5. SATCHING A TEOITIL c.ueiiieiriiieireetr ettt ettt et se ettt s a ettt sa et st se e e e e ae et sae st st emesaeseenenens 24
5.1 Searching a term, iN ENETAL..........cceieuiriiirereteree ettt se et es 24

5.2 Backend process of SearChing @ teIMN.......c.ccveueeirueerireererieiirineet ettt sttt esesseseessesessesenens 26

6. Updating eXiSTNG fIlecoueueiririeerieeireeree ettt ettt sttt sttt s b et ettt sseseenes 27
6.1. Calling file update in frONENA:cceerieirireireeeeeee ettt sttt et ses s e se e b e neeen 27

6.2. Delete related information in backendcccccceiininiicicnnnceccc e 28

6.3. Reincarnation of the file at the end of Updating ProcCess..........cocereevrirerrerereerneeereneerereeeeseeseneene 29

7. DELEtING @ fIlE ...ttt ettt et e e b nen 29
7.1. Calling file deletion in frONTENAccoreirrieineeireerrere ettt et e se e seene e 29

7.2. File deletion in BACKENd ..ottt es et se s s e easnne 30

. ;ﬁ' napps
Doc Search Project realize wur |deas

I. INSTALLATION OF THE PROJECT

1. Setting Up Services on AWS Console

The following resources and/or services are used to implement and to deploy the project. The
account owner (root user) can give appropriate permissions to [JAM accounts in order to access
theses services:

Service PUrposes Quantity
name P (if applicable)
DynamoDB Storing the following data: 1 table

- Textract data from processed documents

- Comprehend data from processed
Comprehend JobID.

- All of other information of a record, one
record reflex a document which is uploaded
to AWS S3. Please refer to the following
parts to see more details.

Lambda Deploying Serverless functions for the backend of
the project.

API Gateway Making deploy serverless functions accessible by
the Qualee web app in the form of APIs
communicated by REST HTTP requests.

Textract Detecting and extracting any data in the form of
English texts from PDF files in S3, the returned data
will be stored in DynamoDB by various processes
that will be mentioned in the following parts.

Comprehend Detecting the entities, the minimal compound
English phrases that can convey a concrete
meaning from a long text (the Textract outcomes in
our case), and labelling each entity as PERSON,
LOCATION, ORGANIZATION, COMMERCIAL _ITEM,
EVENT, DATE, QUANTITY, TITLE or OTHER.

S3 Storing raw PDF file without any modifications 2 buckets:
uploaded from user local computer via Qualee web
app. Each file is accompanied with its uploaded
date and time. This datetime will be updated each

yinapps

realize your ideas

Doc Search Project

time user uploads a new version for it. Deleting a - One for
document is allowed. The document can (only) be document
downloaded by matching IAM credentials. uploads
Versioning is not turned ON for storing documents. . One for static
Storing static website’s files (HTML, JavaScript, website
CSS, etc.) in order to deploy the website to end
users.

Cloud Supporting uploading and deploying Lambda

Formation functions.

*This service is not activated by user’s manual
manipulations on AWS Console but is accompanied
automatically by default when using AWS Lambda and/or

API Gateway.
Elasticsearch Hosting Elasticsearch server to serve the searching 1 domain
Service purpose of the project.

*This is only the hosting platform for an Elasticsearch
server, not the server itself. Developers still need to build
the Elasticsearch server as usual manners.

Console Accessing and monitoring services that developers
are using.

CloudWatch Keeping track on logging info (errors, debugging
output, etc.) of services that are implemented in the
project.

For the two S3 buckets, go into the Bucket Policies section and add the following settings to
allow file access and loading from the end user:

@ In the Permission section, turn OFF all settings related to blocking public access on the S3
bucket:

Block public access (bucket settings)

Public access is granted to buckets and objects through access control lists (ACLs), bucket policies, access point policies, or all. In order|
These settings apply only to this bucket and its access points. AWS recommends that you turn on Block all public access, but before app
require some level of public access to your buckets or objects within, you can customize the individual settings below to suit your specifig

Block all public access

I Block public access to buckets and objects granted through new access control lists (ACLs)
off

I Block public access to buckets and objects granted through any access control lists (ACLSs)
off

I Block public access to buckets and objects granted through new public or access point polici
off
L Block public and cross-account tob and obj through any public or point

~dinapps
Doc Search Project realize yopmgm

@ Next, in the Bucket Policies section, set a policy in JSON format as follows:

Bucket policy editor ARN: arn:aws:s3:::qualee-document-data In line 9:in the PrlnClpal

Type to add a new policy or edit an existing policy in the text area below. SeCtiOI’l, after “A WS.'”, fulfil
with the ARN of the assigned
"Version": "2012-10-17", credentials of the IAM
"Id": "Policy1546414473940" .
"Statement”: [account set up in the backend
t settings as mentioned above.

"Sid": "Stmt1546414471931",

"Effect”: "Allow",

"Principal”: { . . .
"AWS": Marn:aws:iam: :XXXXXXXXXX:user/iam_usemamer' Inline 17: replace with the

1, ARN of the S3 Bucket you are

"Action": [.
"s3:GetObject", working on.
"s3:GetObjectAcl”,
"s3:PutObject”,
"s3:PutObjectAcl”

1,

"Resource": "arn:aws:s3:::qualee-document-data/*"

@ Then click Save to save the policy which is just created.

Perform the same
actions as above with
the bucket of deploying

"Version": "2012-10-17",
"Statement": [

. . {
the .statlc website of the "Sid": "PublicReadGetObject”,
project. "Effect": "Allow",
"Principal": {
. IIAWSII: Mo
However, its Bucket }
Policy needs to be more "Action": "s3:GetObject",
open than a bucket used "Resource": "arn:aws:s3:::qualee-static-site/*"
}

to store documents, as
on the right:

Also, in the bucket of static website:

Access points

@ Go to Properties, click on the
Static website hosting section: .

5 logging Static website hosting 0]
is that provide Host a static website, which does not Reco
requests. require server-side technologies. the
Learn more

@ Bucket hosting

Doc Search Project

@ Click the Static Website
Hosting tab, select Use this
bucket to host a website, then
click the Save button:

Static website hosting

Endpoint : http://qualee-static-site.s3-website-ap-southeast-
1.amazonaws.com

./ Use this bucket to host a website &

Index document €

| index.html |

Error document €

i emror.html |

Redirection rules (optional) €

.j"_:- Redirect requests €

A

C ';- Disable website hosting

° Bucket hosting Cancel | m

2. Configuration of the Project’s Backend

inapps

realize your ideas

The backend of this project is made by Python with Boto3 library which is a famous library of
AWS/Serverless for Python 3.x. It provides various APIs for manipulation many services of AWS

via Python code.

However, this Python project is set inside an outer Node.js project which makes the Serverless
offline debugging easier and eases the deployment process from Serverless project to AWS

Lambda/API Gateway.

In config es.py file, fulfil the host, region, aws_access_key_id and aws_secret_access_key with

appropriate credentials of IAM user, as illustrated below:

FULFILL WITH OWNER IAM (OR ROOT USER) CREDENTIALS:

credentials = boto3.Session(
aws_access_key_id=")C00000000XXXXXXXX", # ACCESS KEY

).get_credentials()

host = "https://xxxxxxxx" # For example, my-test-domain.us-east-1.es.amazonaws.con
region = "us-west-xx" # e.g. us-west-1
service = "es"

aws_secret_access_key="000000000000CO000000COCO00CCOO000OMMXXXX", # SECRET KEY

Next, the name of two indexes, in which the data serving for searching is organised, must be also

set; each of these two names will be concatenated to host name to establish full URL of
Elasticsearch:

inapps
Doc Search Project ' muzmpmgm

data_index = "data"
keywords_index = "keywords"

In app.py, the main file of the backend, fulfil with appropriate credentials of IAM user, as
illustrated below:

tableName "tablename" MO DB

accessKey = "XXXKXXXXXXXXXXXXXXKX”

secretkey OOOOOOOOCOOOOCOOOOCOCOCOOOOOOOOOOOOCO"
s3BucketName = "qualee-document-bucket" # DYN

region = "us-west-xx" REGION

Finally, in query_textract_cron.py:

s3BucketName = "qualee-document-bucket"

region = "ap-southeast-xx"

tableName = "textract results"

accesskKey = "XO0O000COOOOCOOOMX"

secretKey = "X000000000O0OOOOCOOOOCOCOOOGOGOOOOMX

3. Configuration of the project’s frontend

The frontend of this project is implemented by React in Next.js framework. Its main job is to
create a static website to deploy to an AWS S3 bucket; From this, it uses the static website hosting
feature of AWS S3 to distribute this website to public users.

In the pages/index.js file, between lines 21 and 29, an AWS credentials must be set up to access
AWS resources or services. Before that, however, the developer must ensure that the AWS SDK
for JavaScript is installed into node_modules and present in the project's package.js.

The region, accessKeyID, secretAccesKey, and bucketname variables illustrated below must be set to
the correct, specific, and correct way with the AWS identity that the developer is using:

var region = 'us-west-xx';

var s3 = new AWS.S3({
accessKeyId: "XXXXXOOOXXXXXXXXXXXX !,
secretAccessKey: "XXOGO0OGONOGAAOAOAAAOAOOOOCOONXXXX ",
region: region,

1)

var bucketname = "qualee-document-bucket";

ndinapps
Doc Search Project CF reauzmpmgeas

It should also be mentioned that these identity settings must be exactly correct as it will directly
affect the access URLs to the project services and/or resources. Here are two variables that will
use the identities mentioned above to access the URLs, if the developer wants to ensure the
accuracy of these URLs, they can hard code instead of appending the existing variables, as
exampled below:

export default function Home() {
const bucketUR1Prefix = ‘https://${bucketname}.s3-${region}.amazonaws.com/";
const hostURL = “https://f7lnk1z64h.execute-api.${region}.amazonaws.com";

Note that the hostURL variable is the same prefix between all backend endpoints that have been
previously deployed to AWS.

ahinapps
Doc Search Project U reauzmpmgeas

II. PROJECT IMPLEMENTATION ON AWS

The implementation of this entire project to AWS will go through 3 main steps:

- Deploying the backend system to AWS Lambda and API Gateway
- Deploy the frontend system to AWS S3 as a static website.
- Seta cronjob in AWS Lambda Events for /dev/runtextract to run every 60 seconds.

1. Deploying the backend system to AWS Lambda and API Gateway

In the source code of the backend, ensure the issues are covered below before deploying to
AWS.

In the serverless.yml file, between lines 16 and 21, the developer needs to make sure that the
region and profile of the project deployer are set up correctly with the access key and secret key used
in the project as mentioned in previous sections. Programmers must carefully refer to the named
profile settings of AWS, which will be used to fill the profile section of the provider as shown
below.

provider:
name: aws
runtime: python3.6
stage: dev
region: ap-southeast-1
profile: inapps

For more details of AWS named profiles on local machine, refer it via this link.

Next, it is necessary to ensure that serverless, pipenv, and docker are installed on the developer's
local computer. However, the use of docker will be automated by Serverless, programmer does
not need any action on this platform. After that,

- Run the pipenv shell command to activate pipenv, then run the pipenv install to install all the
Python dependencies associated with the project.

- Run the command npm install to install the Node]S packages installed in the project.

- Run sls deploy command to start deploying the backend to AWS. If successful, this will
return a list of API endpoints deployed to AWS.

After successfully deploying the backend to AWS, still on the command line screen in the pipenv
shell, type serverless info to list the entire list of endpoints deployed to AWS which could be
similar as below:

‘npinapps
Doc Search Project U mauzmpmgeas

qualee-serverless-flask-dev

None

C nts:

ANY - https://f71lnklzé4h.execute-api.ap-southeast-1.amazonaws.com/dev

ANY - https://f7lnklzé4h.execute-api.ap-southeast-1.amazonaws.com/dev/{proxy+}
GET - https f71lnklzé4h.execute-api.ap-southeast-1.amazonaws.com/dev/hung

POST - https://f71lnklzé4h.execute-api.ap-southeast-1.amazonaws.com/dev/sendbinary
POST - https://f7lnklzé4h.execute-api.ap-southeast-1.amazonaws.com/dev/comprehend
GET - https://f71lnklzé4h.execute-api.ap-southeast-1.amazonaws.com/dev/listalldocs

POST s://f71lnklzé4h.execute-api.ap-southeast-1.amazonaws.com/dev/textractfrompdf_startjob
POST ://f71nklzé4h.execute-api.ap-southeast-1.amazonaws.com/dev/textractfrompdf_trackjob
POST 51/ /f71lnklz64h.execute-api.ap-southeast-1. .com/dev/querytexttract

POST ://f71nklzé4h.execute-api.ap-southeast-1. .com/dev/deletedoc

POST ://f71nklz64h.execute-api.ap-southeast-1. 5.com/dev/listallsearchdata

POST ns://f71lnklz64h.execute-api.ap-southeast-1.amazonaws.com/dev/search

POST s://f71nk1zé4h.execute-api.ap-southeast-1.amazonaws.com/dev/suggest

POST ://f71nklzé4h.execute-api.ap-southeast-1.amazonaws.com/dev/startdetecttexract

GET - https: lnklzé64h.execute—-api.ap-southeast-1.amazonaws.com/dev/runtextract

POST - https://f7lnklzé4h.execute-api.ap-southeast-1.amazonaws.com/dev/deleterelatedinfo

Somehow, the programmer needs to remember this endpoint list in order to deploy it into the
project’s frontend because the frontend will need to call these APIs through HTTP requests.

2. Deploy the frontend system to AWS S3 as a static website

In the working directory of the frontend it is very essential first to run the npm install command to
install all the project dependencies.

In the packages.json file, around on line 11, change the following values:

- "qualee-static-site" to the name of the bucket used to store the static website of the project.
- "inapps" to the name of a named profile of AWS on the deployer's local machine

TsEripts"s £
"dev": "next dev -p 4000",
"build": “next build",
"start": "next start -p 4000",
"export": "next export",
"prepare": "next build && next export",
"upload": "aws s3 sync out s3://qualee-static-site --profile inapps"

}J’

"donendencisc™: f

Then, run the following commands:

- npm run prepare: used to initialise a set of static files for a pure HTML / CSS and JavaScript
project. This set of files will be used to upload to S3.
- npm run upload: upload static website to S3.

10

fod)inapps
Doc Search Project realize yopmgm

When the process is complete, the developer opens the $3 Console and goes into the bucket that
is set up for static web hosting. In the Static website hosting section mentioned earlier, click on
the Endpoint URL:

(@) Use this bucket to host a website @

Index document €

index.htmi

Error document €9

error.htmi

Redirection rules (optional) €

™\ Redirect requests €

") Disable website hosting

° Bucket hosting Cancel |

The browser will automatically open this website in a new tab.
3. Set a cronjob in AWS Lambda and CloudWatch Events to run every 60 seconds

Inside the deployed backend, there is /dev/runtextract which must be set to run every 60
seconds to extract Textract and Comprehend data to inject into DynamoDB table. For each
occurrence, the operations of this cronjob can be described as below:

- Itwill loop for all filename in S3, the length of the loop will be equal to the number of files
in S3.

- For each loop, it will check if the file has its extraction data in DynamoDB or not. For more
details, it checks if there is any record with its “docname” attribute in the table is equal to
the filename or not:

o Ifnot, it will create a new record.
o Ifyes, it will check if the “data” attribute has the element “PENDING”:
= Ifyes, the Textract and Comprehend data need to be injected to this
attribute, it means the entire process of Textract and Comprehend needs to
be operated in order to gain the outputs.
* If no, there is nothing to do with the record, the loop will go ahead to the
next iteration’s item.

The setting up of cronjob in AWS CloudWatch Events is necessary, this setting can be summarised
as the below instructions:

11

inapps
Doc Search Project 4 reauzmpmgeas

E'f_"f_'s Services ¥

CloudWatch Rules > keep-running-textract
Dashboards 4 Summary
Alarms
ARN @ am:aws:events:ap-south: .
2. Set it to run every
Schedule Fixed rate of 1 minutes i
1 minute
Status Enabled
Billing Description keep-running-textract
Logs Monitoring Show metrics for the rule
Log groups
Insights Ta'rgets
Metrics Filter:
Events
1. Create a new rule [Type Name :
in Cloudwatch Event Buses Lambda function qualee-serverless-flask-dev-runtextract 2. Link it to the

Events ServiceLens

Service Map

correct deployed
Lambda function

Tenmne

12

fod)inapps
Doc Search Project realize yopmgm

III. PROCESSING FILE IN THE BACKGROUND BY BACKEND

In general, each file after being uploaded will be processed via Textract and Comprehend to get
as much as possible meaningful content. After that, the processed data will be organised and
stored in a DynamoDB table, this actions helps to make sure a document to be processed with its
Textract’s job ID and to back up Textract data for future use, in order to prevent the fact that one
document is processed multiple times by multiple job ids. In the meantime, data is also added to
Elasticsearch database in order to return search results in the future.

The entire process can be summarised as the flow chart below:

Textract Job ID

43000404 11

etect——» @ il promise—>»

<
User inputs a file from their desktop AWS S3 (:::r?c.rl\-?;::lf;) l
wait... <
I
check
AWS Elasticsearch Service AWS DynamoDB

Job has

YES
results

Textract
results

?i—addlupdate— <€—save
save

done.

|
A

User now can search for what they have uploaded

results

AWS Comprehend

1. Detecting and Extracting Written Texts From File By AWS Textract

After having done with uploading a new document, the entire process of extracting and getting
meanings from file will be in the background that user is unable to interact with.

13

‘npinapps
Doc Search Project U mauzmpmgeas

The first step of this process is to extract any written standard English texts from raw file.
Textract is able to set processing language to other popular languages but this setting is not
automatic but manual by developer’s selection in their code. For example, if a French text is
inputted under English Textract process, all accents and specific symbols of original language
will be removed.

The process of Textract used in this project is asynchronous, which means the Textract results
are not returned immediately when being requested. The asynchronous process will return a Job
ID as an “invoice” for the promised job. After that, a cronjob-like mechanism is set in AWS
Lambda Events to keep checking if the Job ID is already assigned the results or not, this
mechanism is repeat every 60 seconds.

After each 60-second occurrence, if the results are still not gained from Textract, a one-element
array including “PENDING” as a placeholder will be putted into DynamoDB table, as illustrated
by the code below:

item = {
"docname": documentName,
"jobid": responseJobJD["JobId"]
"datecreated”: str(timestamp),
"datemodified": timestamp,
"data": ["PENDING"],
"comprend": [],

}
try:
table.put_item(
Item=item,
ConditionExpression="attribute_not_exists(docname)",
)
except:
return {
"statusCode": 200,
"body": "Item is already existing, no need to put item.",

"headers": headers,

If the result is gained from Textract, which means Textract detection was successful, it will be
updated to DynamoDB by its matching Job ID (each job ID is one object in DynamoDB) to replace
the placeholder “PENDING” mentioned above. The sample code to get the text detection by
Textract is below, in which the variable textList is holding each “line” of text that Textract has
detected:

14

fod)inapps
Doc Search Project realize yopmgm

response = textract.get_document_text_detection(JobId=jobitem["jobid"])
if response["JobStatus"] == "SUCCEEDED":
for item in response["Blocks"]:
if item["BlockType"] == “LINE":
print("\n" + item["Text"])
textList.append(item["Text"])

For example, the raw input is like this:

Management Review

Five Management
Strategies for
Getting the Most
From Al

A global survey of C-level executives finds that Al is
delivering real value to companies that use it across
operations and within their core functions

Jacques Bughin

The Textract data to save to DynamoDB will look like this (in green):

v data List [172]

String : MITSloan

String : Management Review

String : Five Management

String : Strategies for

String : Setting the Mast

String : From AI

String : A global survey of C-level executives finds that AI is
String : delivering real value to companies that use it across

String : operations and within their core functions.

(7= - - IR - B A - T S

String : Jacques Bughin

After Textract result set is saved into database, backend keeps using this result for Comprehend
process.

15

‘npinapps
Doc Search Project U mauzmpmgeas

2. Getting English Meaning of Word/Phrase Entities by AWS Comprehend
It is obvious to see that the Textract data saved in DynamoDB table is a list/array. The Python

Boto3 backend re-concatenate all the elements in this array into a continuous text on which
Comprehend will run the detection to output the word entities.

AWS Comprehend will Treon | 1ZlL
* +
analyse, predict and give v Item {7}
scores 1o guess what category (+] v comprend List [34]
the item belongs to in © v @ Map {3}
5 . String : 8.9023089538650513
Comprehend’s available e i
(4] text String : MITSloan
genres (types). Comprehend o type String : ORGANIZATION
then selects the highest o v 1 Map {3}
scoring judgment to make a © score String : 0.9636715650558472
prediction Wthh haS SUCh the (4] text String : Five Management Strategies
. [+] type String : QUANTITY
score become the final result. o o=
i (3)
Comprehend’s results, then, [+ score String : 8.9868689179420471
are also saved to DynamoDB, (+] text String : Jacques Bughin
for example as the illustration ° e Steing o PEN.
. 3 Map {3}
on the right: e N 2
o score String : 0.4547305703163147
(4] text String : I
+] type String ! OTHER
L+) v 4 Map {3}
(+] score String : 2.9632968902587891
4] text String : http://mitsmr.com/2zH3h@a
(4] type String : OTHER
(4] » 5 Map {3}

By default, AWS Comprehend only supports some main entities, including PERSON, LOCATION,
ORGANIZATION, COMMERCIAL_ITEM, EVENT, DATE, QUANTITY, TITLE or OTHER. However,
developer can build custom entities by injecting additional data to Comprehend to perform NLP -
machine learning to make more accurate predictions in the context that the user provides.

3. Management of Extraction Outputs by AWS DynamoDB

After the operations of Comprehend and Textract completed, all outputs of these two processes
will be injected into the DynamoDB database. DynamoDB is a NoSQL data system that allows
storage in various different forms, not limited only by columns and rows. That is the reason that
the output data of Comprehend and Textract is saved as key-value or array as shown above,

making it easier to organise and retrieve data.

The structure of a record in DynamoDB can be illustrated as follows:

16

Doc Search Project

(-)inapps

realize your ideas

v Item {7}
(+] » comprend List [34]
(4] » data List [172]
(4] datecreated String : 1601902387864
(4] datemodified Number : 1601902387864
(4] docname String : Five Management Strategies (1).pdf
(4] jobid String : a18522707ddd1cac1fc9426c3b6edc90a3a5eb66352de6ba7910a7Fd13894886
(+] size Number : 7872
Attribute Data type Explanation
comprehend List of Map Each element in the list is a Map, which has:
- score: the score by which the prediction if selected.
- text the raw text of the labelled entity
- type: the predicted label of the entity
v comprend List [34]
v @ Map {3}
score String ! 8,9023009538650513
text String : MITSloan
type String : ORGANIZATION
» 1 Map {3}
a2 Man 31
data List of String reflexes a LINE in Textract result.
v data List [172]
@ String : MITSloan
1 String : Management Review
2 String : Five Management
3 String : Strategies for
4 Strinn ! Sattinn tha Mnct
datecreated String The timestamp of the date on which the file is uploaded to S3
datemodified Number The timestamp of the date on which the file is uploaded to S3.
This field is temporarily not used in the project for any
purpose.
docname String The document name uploaded on S3
jobid String The Job ID of the latest Textract job that generated the results
of text detection.
size Number The size (in bytes) of the entire extracted text, the file content,

from Textract.

*This is not the file size of the uploaded document.

17

Doc Search Project

4. Adding Data to Elasticsearch Service

adinapps

realize your ideas

The project’s Elasticsearch database contains two indexes: one for saving Textract and
Comprehend data, one for saving keywords for suggesting functionality. These two indexes are
reflexed in Python backend with the two following functions.

Function #1: Uploading Textract and Comprehend outputs to Elasticsearch

def uploadToElastics(data, comprehend, docname):
indexName = "data"
timestamp = int(time.time() * 1000)
path = indexName + "/_doc/" + str(timestamp)
url = host + path

payload = {
"user": "hungnguy",
"timestamp": timestamp,
"body": data,
"comprehend": comprehend,
"title": docname,

resp = requests.put(
url, auth=awsauth, json=payload
)

print(resp.text)
return resp.text

The function uploadToElastics
serves to uploading Textract and
Comprehend outputs for the
purpose of searching by end user.
This function takes three obligatory
params:

- data: the array of Textract
results

- comprehend: the array of key-
value objects of Comprehend
results.

- docname: the original
filename, in String, of the file
from which Textract and
Comprehend gained outputs.

The payload, which signifies one object to be uploaded to Elasticsearch, should have user field.
This could be the username of the server owner or the end user in case the web app would have
authenticating feature of login/signup. The awsauth variable is a key-value object which includes
access key, secret key, region, service name (in this case it is “es”) and the session token which was

generated in the step of setting up the project in part 1.

awsauth = AWS4Auth(

region,
service,

credentials.access_key,
credentials.secret_key,

session_token=credentials.token,

Function #2: Preparing data for suggestions

Suggestion feature is developed in this Qualee project in order to help users find out the exact
keywords in case they did not memorise the correct form of the search term.

18

Doc Search Project 'y L';?.zeq,opmgeass
For example, when people search for keyword “reect”, this search is unable to result any output
because the word “reect” cannot be found in any uploaded document since it is a mis-spelling
mistake when user types it in the searching textbox. In this case, the suggestion feature will scan
the Elastics database and guess the nearest correct form of this word which could be “react” or
“react.js” as the following figure:

Search

Q, reect

Update?

No results for this search. Did you mean?

ticketbox-rubyonrails.herokuapp.com | ruby | regex] 2012 r2] rails 5] flixie-react.netlify.com |
 relations] 2 remote branches] react.js J human resource management series |

This function can be illustrated as the following figure:

The function uploadKeywordsToElastics serves to uploading Comprehend outputs for the
purpose of suggestion search keywords for end user. This function takes three obligatory
params:

- data: Comprehend

def uploadKeywordToElastics(data: str, type: str, fromDoc: str): entity’s raw text, in

timestamp = int(time.time(} * 1000) . String.

prepared_keyword = "_".join(data.split()).lower() .

path = "keywords/_doc/" + prepared_keyword - type: the entity’s type

url = host + path that Comprehend

payload = { predicted, in String.
ser™s TANENGY - fromDoc: the original
..;;Tifazzt; VA filename, in String, of
"typz": type: the file from which
"from": fromDoc, Comprehend gained

} outputs, in String.

r1 = requests.put(url, auth=awsauth, json=payload)
return r1.text

19

fndinapps
Doc Search Project reauzmpmgeas

IV. USAGES

1. Access Web App

Access to http://qualee-static-site.s3-website-ap-southeast-l.amazonaws.com.

2. Uploading A New Document

“Loading” text will appear on the web interface while the web app is preparing data for its
operations. Main user interface of the web app will be loaded after a short while:

806 A Qualee Pilot Project Page L -
[(¢ qual ic-site.s3 bsi P h 1.amazonaws.com =
QUALEE
Doc Store Search
Choose File | No file chosen Q search
Name Filename Uploaded Size Update?
Five Management Five Management Strategies 05 Oct 20, 353
Strategies (1) (1).pdf 07:53:07 KB

If the “Loading” text keeps appearing on the web browser so long, consider using another
browser or that the system is not compatible with HTML5/CSS3:

ano Qualee Pilot Project Page
[L | I [+ |A http:/ /qualee-static-site.s3-webs (_‘,1 (Q'- 10)
[0 &2 Apple Yahoo! Google Maps YouTube Wikipedia News (143)y 3
H
Loading
| =) r

When pressing Choose File, a dialog appears in order to pick a file for uploading:

20

~hinapps
Doc Search Project PP

realize your ideas

2.53-website-ap-southeast-1.amazonaws.com

[« »|[z2}=/ m) (& Downloads ¥
DEVICES Shared Folder
| Macintosh HD Name & Date Modified
£l iDisk B fintech-report-2020.pdf Yesterday
SHARED "
& Shared Folders & dl
@ Al
i PLACES
A Deskiop

5% hungnguy
7\ Applications

el

! Format: | Portable Document Format {Pbﬂa
ra

TR
N——

The default format for uploading is PDF; if it is not chosen automatically, user can set it in
Format dropdown box:

Format: | Portable Document Format EPbﬁa

The project is intentionally configured to work on PDF format.
User must keep using one file format for the entire life of the file. If user chooses to upload with a

file format other than the original/first version’s one, it will crash all Textract and Comprehend

processes in the future. For example, if user upload a PDF file to S3, the next version(s) of that file
must be always in PDF.

After having chosen a file, user can click on Upload to start uploading.

The file will be uploaded to S3 storage, browser will inform user when the file is uploaded:

Doc Stare
z | qualee-static-site.s3-website-ap-
rt-202) southeast-1.amazonaws.com says: ISear
Your file is successfully uploaded! I
Filer oK
/e Man A
rategies (1).pdf 07:53:07 KB For

21

{-)inapps
Doc Search Project muzmpmgm

The file list will be updated to reflex the newly uploaded file, it will be usually shown on the top of
the list. User can take a look on the Uploaded (date) and the file size of each file:

Doc Store
Choose File | fintech-report-2020.pdf
Name Filename Uploaded Size Update?
fintech-report-2020 fintech-report-2020.pdf 06 Oct 20, 01:30:22 4.9 MB

Five Management Strategies (1) Five Management Strategies (1).pdf 05 Oct 20, 07:53:07 353 KB

Immediately after uploading a file, the processing procedure will be triggered automatically and
in the background. User must wait at least 1 minute to be able to search for any content in the
latest uploaded file. This process is described in the following part.

3. Frontend Process of Uploading a File

The frontend engine receives file from the user through a multipart form and only allows
uploading 1 file per time. This form then uses a function named newFileUpload(), which takes
one param as a file from form’s e.target, to initiate the S3 upload process through the AWS
JavaScript SDK. The figure below is the main part of this function:

var params = {
Bucket: bucketname, Key: filePath, Body: file, ACL: 'public-read'
¥

s3.upload(params, async (err, data) => {
if (err) {
console.log(err);
alert('There was an error happening, please try again later.');
} else {
console. log(data);
const startTextract_resp = await axios.post(startTextractJob, {
"docname": data.key,
3
console. log(startTextract_resp);
alert('Your file is successfully uploaded!')
getAllDocs();
setFile(null);
}
}).on("httpUploadProgress', function (progress) {
var uploaded = parselnt((progress.loaded * 100) / progress.total);
setProgressUploading(uploaded);
i9H

22

fndinapps
Doc Search Project U realizevgg;as

With the new file uploaded on S3, which means the file list is appended with a new element,
frontend needs to refresh the file list by re-calling the endpoint /dev/listalldocs again.

After that, it requests to start processing with Textract through calling an API of
/dev/startdetecttexract to request to start in the background the process including Textract,
Comprehend and Elasticsearch, all of this takes about 1 ~ 10 minutes depending on the length
and complexity of the document.

4. Uploading a File with treating duplicates

The process of uploading a file is described as the above part; however, if S3 detects that the
filename (no matter what the file content is) is already existing in S3 bucket, the website will
prompt user that they still want to continue or not, as illustrated below:

- If yes (clicking on OK), the old file will be overwritten with the one being uploaded.
- If no (clicking on Cancel), the file system on S3 keeps unchanged.

qualee-static-site.s3-website-ap-
southeast-1l.amazonaws.com says:
You're about to overwrite a file which is already existing in
your database.
Are you sure to continue?

nar

ort (Cancel) (oK)

1t Strategies (1).par U5 UCT ZU, U7I55:U7 555KB () i}

By pressing OK, user must take into account at their own risk that they will have no way to
reverse to the old version before the overwrite. The new file, once uploaded, will be treated a
“brand new” file.

The overwrite process will also delete all Textract, Comprehend and Elasticsearch data that
related to the old version, then these data will be re-initialised, which means the file will go
through Textract, Comprehend and Elasticsearch process again until meaningful data is gained
from the file.

The code of checking duplication can be illustrated in the code below, in which, doclistis a state
variable in React which holds the file list:

23

fndinapps
Doc Search Project \ reauzmpmgeas

if (docslist.filter(function (e) { return e.docname === fileName; }).length > 8) {
objectIsExisting = true;
if (confirm("You're about to overwrite a file which is already existing in your datab
deleteDocument(fileName, "@");
} else { return; }

After clicking OK, the uploading process will happen in the normal way then user will see the
uploaded date updated, they may also see the file size changed after uploading.

This duplication treating process is also the mechanism of updating an existing file which will be
mentioned in the next parts.

5. Searching A Term

5.1 Searching a term, in general

m |[he

User needs to input the
term that they want to
search on searching Search
textbox in the web UI,

after second(s), the search Q report

results will be shown in
“Search results”list on the
right of the main interface,
some suggestions will also

—

Also in your results

appear in “Also in your TR

results” box based on the

resemblance of the search Search results :
term with some nearest "

. . For the purposes of this report, we have defined
neighbours in

Elasticsearch’s
“keywords” index:

fintech-report-2020.pdf

The analyses in this report are based on data from

fintech-report-2020.pdf

2re appear to be countless articles and reports about

If the web app cannot find any matching result from Elastics, it will show a dialog informing that
the result is not found, as the following figure:

24

£)inapps

Doc Search Project realize your ideas
Search
Q huge
Size
| qualee-static-site.s3-website-ap-
49 MB @ southeast-1.amazonaws.com says: h?

353 KB Search with "huge".

This search returns no results, please keep trying with
another keyword.

[_| Prevent this page from creating additional dialogs.

—'"“aninq purpose:

In addition, for non-searchable term/keywords, the web app shows some suggestions thanks to
suggestion APl implemented in the Python backend:

Search

Q huge

No results for this search. Did you mean?

When clicking on a suggestion, the web app will start to search with its text and list a new results
list after the new search:

Search

Q eric hazan

Also in your results

Search results

JACQUES BUGHIN AND ERIC HAZAN

Five Management Strategies (1).pdf

25

()inapps
Doc Search Project ' muzmpmgm

5.2 Backend process of searching a term

In general, when user presses Enter from keyboard on the search textbox, the frontend starts the
process for searching with the search term, it will call the backend API /dev/search. After a short
while, the API will return search result as an Elastic search result object from which the frontend
will start treating data to make it into a JavaScript list of objects that can be shown on web UL

By searching request is fired by the frontend, it will trigger the API “search”in backend, this
search endpoint calls a core function startsearch() which takes a query string. This function
returns search results from Elasticsearch domain’s URL by making GET request based on query
type on Elastic mechanism:

def search(event, context): def startsearch(query: str)
print("Coming to search(event, context)")
query = json.loads(event["body"]) print("Query in progress: " + query)
query_string = query.get("term") query = {
data = startsearch(query_string + "*"ﬂ "query": {

"gquery_string": {
*fields": ["body", "title"],

return { "query": query,

"statusCode™: 200, "analyze wildeard": True,

}

"body": data, }

"headers": headers, i
¥ print(url)

r2 = requests.get(
wrl;

auth=awsauth,
data=json.dumps(query),
headers={"Content-Type": "application/json"},

)

return r2.text

The Elastic search result object which is returned by backend can look like this:

POST ~ https://f7Ink1z64h.execute-api.ap-southeast-1.amazor Send m 329 ms 20.2 KB
JSON ~ Auth Query Header 1 Docs Preview ~ Header 12 Cookie Timeline
1w { 1w {
"term": "five" 7 "took": 4,
¥ ¥ 3 "timed_out": false,
" shards": {
“total": 5,
6 “successful": 5,
7 “skipped": @,
8 "failed": @
},
10 "hits": { o
11 “total": {
12 "value": 2,
13 “relation": "eq"
14 ¥
15 “max_score": 1.0,
663 }
664 }

26

inapps
Doc Search Project realize yopurgms

In the search results of term “five” above, the backend generates two objects in “hits” (the inner
“hits”), this is the basis on which the frontend will treat/process to establish a list of search
results in order to print to the screen for the user.

6. Updating existing file
The process of updating an existing file will go through these treatments:

- Uploading new document to AWS S3 with exactly the same filename of the original file.
*S3 has a built-in feature to overwrite a file with new version while the old one will be
deleted completely.

- Deleting all Textract and Comprehend data that was stored in DynamoDB and Elastics
database which are related to the filename being updated, for more details:

o The data record in DynamoDB which has such the filename in “docname” field will
be removed completely.

o The Textract and Comprehend data in searching index of Elasticsearch which has
such the filename in “docname” field will be deleted completely.

o The Comprehend data in keyword index of Elasticsearch which has such the
filename in “docname” field will be deleted completely.

- Triggering the /dev/startdetecttexract to re-initialise the entire in-background processing
procedure with the new file content.

User has to take into account a fact that they must keep track on the file content at their own risk
since the filename is not allowed to be changed during the entire life of the file until user deletes

it (by pressing delete button/icon on the web UI).

6.1. Calling file update in frontend:

When pressing on update button with icon , a dialog will appear and require user to input a file
from their local so that they can feel free to choose a file with which the old one will be updated:

Not Secure — qualee-static-site.s3-website-ap-southeast-1.amazonaws.com

Wanna Update fintech-report-
2020.pdf?

Choose File | no file selected

27

{-)inapps
Doc Search Project muzmpmgm

In the frontend’s programming code, the Next.js frontend uploads a new file to S3 to upload a file
as normal as mentioned in the previous parts thanks to AWS SDK for JavaScript. After that, it
continues to call the API /dev/deleterelatedinfo to delete related information that previously
accompanied to the file so that the newly uploaded one is considered a brand-new one.

The updated file will be shown on top of the file list in web UI with new uploaded date as well as,
maybe, the file size.

6.2. Delete related information in backend

Deleting related information of the file will go through two main steps: delete its data from
DynamoDB (with table.delete_item() function), then delete its data from Elasticsearch database
(with deleteFromElastics() function).

The deleteFromElastics() function, of course, will delete data from both searching index and
keyword index.

The screenshot of code below depicts the main parts of these two actions:

try:
response_delete_db = table.delete_item(
Key={"datecreated": searchInDynamoDB(documentname)},
ConditionExpression="docname = :val",
ExpressionAttributeValues={":val": documentname}]
)
print(response_delete_db)
list_of_deletiong.append("Done deleting DYNAMO DB")
except ClientError as e:

print(e)
try: || !ll
response_delete_es = deleteFromElastics(documentname) def deleteFromElastics(docname)
print(response_delete_es)
list_of_deletiong.append("Done deleting ES") pathMovies = data_index + "/_delete_ by _query”

url = host + pathMovies
queryl = {"query": {"match": {"title": docname}}}
r1 = requests.post(

url,

auth=awsauth,

json=query1,

headers={"Content-Type": "application/json"},

except ClientError as e:
print(e)

)
print(r1.text)

pathKeywords = "keywords/_delete_by_guery"
url = host + pathKeywords
query2 = {"query": {"match": {"from": docname}}}
r2 = requests.post(
url,
auth:awsauthj
json=query2,
headers={"Content-Type": "application/json"},
)
print(r2.text)
return r2.text

28

adinap E)S
realize your ideas

Doc Search Project

6.3. Reincarnation of the file at the end of updating process

The file, after being updated in S3 and deleted its data from DynamoDB and Elastics, will go
through the process of Textract and Comprehend to be searchable by users at the end.

7. Deleting a file

The process of deleting a file will go through these deletions:

- The data record in DynamoDB which has such the filename in “docname” field will be
removed completely.
The key “docname” is not primary key in this project’s DynamoDB. This process of deletion in
DynamoDB requires it as a clue to return the primary key, the “datecreated”, then use this
primary one via dynamo_table.scan() to delete the exact record, as the following figure via sub
function searchInDynamoDB():

def searchInDynamoDB(docname):
print("Coming to searchInDynamoDB")
response = table.scan(
FilterExpression=Attr("docname").eq(docname),
)
print(response["Items"])
if len(response["Items"]) > @:
return response["Items"][@]["datecreated"]
else:
return @

- The Textract and Comprehend data in searching index of Elasticsearch which has such
the filename in “docname” field will be deleted completely.

- The Comprehend data in keyword index of Elasticsearch which has such the filename in
“docname” field will be deleted completely.

7.1. Calling file deletion in frontend

When pressing on update button with icon I:I, a dialog will appear to confirm that the user really
wants to delete their file:

- - o

Are you sure to delete this doc?
Cance| OK d‘

111 1

29

od)inapps
Doc Search Project ' muzmpmgm

7.2. File deletion in backend

Deleting a file will go through three main steps:

- delete the file itself in S3
- delete its data from DynamoDB (with table.delete_item() function),
- delete its data from Elasticsearch database (with deleteFromElastics() function).

The deleteFromElastics() function, of course, will delete data from both searching index and
keyword index.

The screenshot of code below depicts the main parts of these two actions:

try:
response_deleteS3 = s3.delete_object(Bucket=s3BucketName, Key=documentname)
print(response_deleteS3)
list_of_deletiong.append("Done deleting from S3")
except ClientError as e:
print(e)

try:
response_delete_db = table.delete_item(
Key={"datecreated": searchInDynamoDB(documentname)},
ConditionExpression="docname = :val",
ExpressionAttributeValues={":val": documentname},
)
print(response_delete_db)
list_of_deletiong.append("Done deleting DYNAMO DB™)
except ClientError as e:
print(e)

try:
response_delete_es = deleteFromElastics(documentname)
print(response_delete_es)
list_of_deletiong.append("Done deleting ES")

except ClientError as e:
print(e)

30

