
Welcome To Laser Defender

This Section is Work in Progress

We’re working hard to make this section available as
quickly as we can. Hope you enjoy the preview :-)

We’ll be adding videos as we make them in the
coming days.

What Laser Defender Teaches
• Animation basics
• Using Trigger colliders
• Layers and Sorting Layers
• Introduction to Particle Systems

GDD

Downloads Here

1

2

Your Laser Defender Assets

Section notes

Importing the menu system

Importing the menu system
• Open our previous game and import the menu system
• Create a unity package
• Import package into Laser Defender
• Alternatively, we can use the unitypackage from the

section bundle at the beginning of this section

Import a Menu System
• Create a unity package from your previous game

(or use the one provided in the asset pack)
• Import it into Laser Defender

Importing the menu system
• Imported our menus from a previous game or from

the bundle
• We added a blank scene to begin
• Ready to go!

A Starship we can control

A Starship we can control
• Find a suitable sprite asset
• Import into our game
• Create a Player Controller Script to move it
• Restrict the movement to the playspace

Finding a suitable asset
• Found on http://opengameart.org
• We use Kenney’s (http://www.Kenney.nl) Public

Domain sprite assets:  
http://opengameart.org/content/space-shooter-redux

http://opengameart.org
http://www.Kenney.nl
http://opengameart.org/content/space-shooter-redux

Importing the sprite into our game
• Add it to Unity’s assets
• Change the mode to sprite (2D and UI)
• drag it into our scene

Add a PlayerController script to the ship
• Add a PlayerController script to the ship
• Move the ship with the arrow keys
• Make the speed adjustable in the editor

The PlayerController script
• Uses Input.getKey() and transform.position

• Make sure movement is independent of framerate
using Time.deltaTime

Restricting the Spaceship’s position

Restricting the Spaceship’s position
• We don’t want the spaceship to go outside the

playspace
• We will check the position when moving and

restrict it to something sensible

Restricting the Position
• Use Mathf.clamp() to restrict movement
• Use Camera.ViewportToWorldPoint() to work out

the boundaries of the playspace

Creating the enemies

Creating the enemies
• Creating the enemy prefab
• Create an EnemySpawner that will generate

enemies at runtime
• Make the EnemySpawner generate a single

enemy on start

Create the Enemy Prefab
• Use the bundled art assets to create an enemy

prefab

Building the spawner I
• Spawner is an empty GameObject with a script

attached to it.
• The script has a reference to the Enemy prefab

• The Start Method calls Instantiate() to create

an enemy

Building the spawner II
• We child the new Enemy to an EnemyFormation
• This keeps our scene hierarchy tidy and helps us

find what we want
• The Spawner script will need a reference to that

object too.

Creating the enemies
• Creating the enemy prefab
• Create an EnemySpawner that will generate

enemies at runtime
• Make the EnemySpawner generate a single

enemy on start

Creating Enemy Positions

Creating Enemy Positions
• Create a position within the EnemyFormation

• Use OnDrawGizmos() to show the position

• Turn the position into a prefab
• Change the spawning script to keep track of

positions

Create the Position
• Child an empty game object to EnemyFormation

• Add a script and use OnDrawGizmos() to show

the position while editing

Create your formation
• Turn the position into a prefab
• Add several positions from their prefab to the

EnemyFormation
• Be creative about the formation

Spawning multiple enemies
• Loop over every child object
• Grab their transform
• Spawn an enemy on top of every position

Creating Enemy Positions
• Create a position within the EnemyFormation

• Use OnDrawGizmos() to show the position

• Turn the position into a prefab
• Change the EnemySpawner script to spawn an

enemy on every position

Moving the enemy formation

Moving the enemy formation
• Add a Gizmo to show the formation while editing
• On the Enemy formation’s update, move it left or

right to leave the player no space to hide
• Make sure that the formation doesn’t leave the

bounds of the playspace

Showing the Formation in the Editor
• We can use Gizmos again
• We define the width and height of the Formation
• We draw lines around the boundary

Show all four sides of the formation
• Using the Gizmos.DrawLine() function

• Make sure that the Formation appears in the
editor view as a box.

Move the formation side to side
• On every Update() change the position in the

EnemyFormation script
• When it reaches the edge, reverse the direction of

travel

Moving the formation
• Use transform.position to move the formation

• We use Time.deltaTime to ensure the movement

is smooth
• We multiply the x value by 1 or -1 to reverse the

direction

Moving the enemy formation
• Add Update() to the EnemyFormation to move it

side to side
• Add a Gizmo to show the formation while editing
• Make sure that the formation doesn’t leave the

bounds of the playspace

Spawning projectiles

Spawning Projectile
• Player object should spawns laser when [space]

is pressed
• Create a laser prefab

• We use Instantiate() to create a new one

• We give the projectile velocity

Create a laser prefab
• Create a laser prefab from the bundled assets
• When the player presses [space] create a new

instance of the laser prefab

Creating the laser prefab
• Add sprite, create prefab
• Add public field to Player and pass in the prefab

• When the space key is pressed, Instantiate()

a new laser from its prefab

Making the laser shot move
• Add a Rigidbody2D to the laser prefab
• Fix the angle and remove drag and gravity

• From the player set laser.rigidbody.velocity

• As a bonus, offset alternative shots to make it look
like the ship has two guns

Limiting the firing rate
• Use GetKeyDown() and GetKeyUp() to call

InvokeRepeating() and CancelInvoke()

• To avoid multi-shot bug, make sure that the initial
delay is greater than 0.0 for InvokeRepeating()

Destroying the laser shots
• Add a Trigger Collider outside of the playspace
• Attach a Shredder script that destroys all the

objects that enter the trigger
• Add a BoxCollider2D to the laser prefab

Spawning Projectile
• Player object should spawns laser when [space]

is pressed
• Create a laser prefab

• We use Instantiate() to create a new one

• We give the projectile velocity

?
Spawning Projectile Review

Shooting enemies

Shooting Enemies
• Enemies will respond to the projectile hitting them.
• We use Kinematic Rigidbody Triggers for the

enemies
• On trigger, enemy takes damage according to

projectile component

Defining the projectile behaviour
• Create a Projectile script that has a public

damage field
• Add the script as a component of our lasers

Detect laser collisions
• Log a message when a projectile hits an enemy.
• Bonus points if you can figure out how to log messages

only when hit with projectiles

Hint: gameObject.GetComponent<Projectile>() will

return the Projectile component, if it exists

Getting the damage from the lasers
• We use OnTriggerEnter2D() to detect collisions

• We check that the thing we bumped into has a
Projectile component.

• If it does, we damage ourselves and call the
Hit() method of the projectile

Shooting Enemies
• Enemies will respond to the projectile hitting them.
• We use Kinematic Rigidbody Triggers for the

enemies
• On trigger, enemy takes damage according to

projectile component

Enemies shooting back

Enemies shooting back
• Enemies will randomly shoot back with a tuneable

frequency

Make enemies shoot at the player
• In a similar way to the player shooting, make the

enemies shoot at the player

• At first, shoot a projectile on every Update() call

• Bonus: Reduce the shooting frequency by using

Time.deltaTime and Random.value

• When projectile hits the player, log out to console

Creating the enemy projectile
• Identical to player prefab
• Check that projectile has Rigidbody2D and

Collider
• Also includes the Projectile script

Getting hit by the enemy
• Player will need a Kinematic Rigidbody Trigger

and an OnTriggerEnter2D() method

• Still good idea to check for a Projectile component

Tuning the Frequency
• We calculate the probability of firing in a given frame

and fire if appropriate
• Probability of firing depends on how long has elapsed

and the intended frequency.
p(fire this frame) = time elapsed x frequency

• Use Random.value to fire given a probability

Enemies shooting back
• Enemies will randomly shoot back with a tuneable

frequency

Controlling Collisions Using Layers

Controlling Collisions Using Layers
• Player shoots itself when firing!
• Lasers hit each other!
• We need the player’s projectile not to collide with itself

or the player
• We need the enemy projectiles to not collide with

enemies or each other

Create and setup the layers
• Create the Enemies, Friendlies, EnemyProjectiles

and FriendlyProjectiles layer
• Add the appropriate objects to them

Using layers to stop projectiles colliding
• Tag enemy projectiles prefab with

‘EnemyProjectile’ tag in inspector

• Set the FriendlyProjectile, Friendly

and Enemy tags appropriately

• Go to Edit > Project Settings >

Physics 2D and uncheck the

collision box between things that

shouldn’t collide

Detecting enemies have been destroyed

Detecting enemies have been destroyed
• We need to know when all enemies are dead
• We use the childCount property of a transform on

the positions - an empty position is a dead enemy
• We re-spawn the enemies when that happens

Using Transform.childCount
• This lets us know if the enemy ship is still here
• Need to loop over every positions

• Keep logic in AllMembersAreDead() method

Re-spawn enemies
• When all enemies are dead, respawn a fresh

batch of enemies.
• Extract the spawning code from the Start()

method
• Don’t duplicate but call a new method instead

Re-spawning enemies
• Create new method PositionAvailable()

• Spawn enemies using Invoke() until false

• Enables a slight spawn delay between enemies
for effect

Detecting enemies have been destroyed
• We need to know when all enemies are dead
• We use the childCount property of a transform on

the positions - an empty position is a dead enemy
• We re-spawn the enemies when that happens

?
Understanding Transform Relationships

Position animation for a new enemy

Position Animation for a new enemy
• Enemies should animate in, rather than appear
• Create an Animator and Animation Controller
• Create states to represent arriving and flying
• Add the appropriate animation

Explore the animation package
• See if you can make your own unique animation

for the incoming enemy
• Why don’t you explore the other options for curves

in the animator?

An introduction to Mecanim
• For the Enemy prefab, got to the Inspector > Add

Component then search for Animator
• In the Animator, create states by right clicking in the

workspace and selecting New State > Empty
• Create transitions between states by right-clicking a

state and selecting Make Transition

Creating an animation
• Drag and drop an enemy into the scene
• Window > Animator to show the animation tool

Add the animation to a state
• Add your newly created EnemyArriving animation

to the Arriving state in the inspector when in the
animator tool

• Right click and select the EnemyArriving state as
default.

Congrats, your enemies are animating
• Try to tweak the animation to be a little smoother
• See if you can create an idle or formation

animation

Creating a starfield

Creating a Starfield
• The background looks a little barren
• Let’s add a starfield with parallax effect to give

some sense of depth
• We can use a Particle System to do this.

Adding our first particle effect
• Create a new Particle System Object in the hierarchy

• Position it so that the particles are moving down and

towards the camera

• Tune the lifetime and size of the particles to make the

effect look like stars

First Particle System Settings

Explore Particle Effects
• Explore the various options of a particle effect
• See if you can create a smoke signal
• See if you can create a plasma torch
• See if you can create a thruster effect
• Combine with animation for awesomeness!

Parallax?
• As you move, objects in the distance seem to

move less than those nearby
• Good technique to give a sense of depth

artificially, even in 2D
• Relative speed of objects is important

Second Particle System Settings

Play Tune Till Awesomeness
• Play around with the shape and properties of your

particle system until it looks great

Congrats on your first Particle Systems!
• Used two to create a sense of depth
• Background decoration, but changes the feel of

the game a lot

?
Animation and Particle Systems

Keeping Score

Keeping score
• Requires Some object to keep track of the scores
• We’ll create a ScoreKeeper that we attach to the

score
• When an Enemy dies, we’ll call the ScoreKeeper

The ScoreKeeper
• Will track scores and update the UI (for now)

• Attached to the score Text UI element

• We can use the GameObject.Find() function to get the

Score game Object and the GetComponent() method to

get the ScoreKeeper from the EnemyController

Create the UI for the score
• Create a Score text visible to the player that will

keep track of the score
• Make sure that it renders at the right place for the

target resolution

Creating a Score UI
• Create a UI Canvas
• Add a text element
• Style it and use a font from http://dafont.com
• Make sure it renders at the right place by

selecting the right anchor and placement

http://dafont.com

Create the ScoreKeeper Script
• Should be attached to the Score text

• Has two methods: Score(int points) and

Reset()

• Will change the score Text whenever the score is
updated.

The ScoreKeeper Script
• Attached to the Score UI
• We need to call it when the enemies die
• GameObject.Find(“Score”).GetComponent<ScoreKeeper>()

can be used to recover the ScoreKeeper
• Add a public field in our enemy script to keep the value in

points of an enemy
• Send the value from our enemies to our ScoreKeeper

Congrats, we’re now Keeping score
• Created an Object to keep the score
• Attached it to our UI element
• When an Enemy dies, we call it and send our

points to the ScoreKeeper

Sound effects for fun and profit

Sound Effects for fun and profit
• Will make a huge difference to our game
• Easy enough to do
• We’ll look at playing sounds independently of an

object, so that we can play a death sound for the
enemies

Add sound to your game
• Add sound to the enemies and the player so that a

sound plays when:
• The player fires
• The enemies fire
• An enemy dies

Adding sound to the game
• Modify scripts to plays sounds using
AudioSource.PlayClipAtPoint()

• Add sound assets to unity
• Connect clips to scripts
• We now have sound!

Sprites rendering order

Sprite Rendering Order
• Changes which sprites are drawn on top
• Lets missiles from the player be drawn below the

ship when instantiated
• Not affected by z position

Sprites rendering
• Could be controlled with

distance from camera
• Powerful and flexible to control

with layers
• We use layers to make our game

look better by drawing
projectiles below their guns

Create Appropriate Sorting Layers
• So that:

• Player Projectiles render below the Player
• Enemy Projectiles render below the Enemies
• Player Projectiles render above the Enemies

• Make sure you change the Sprite Renderers to have
the right sorting layers.

Change the Render layer for a Sprite
• The Sorting Layer for a sprite can be changed in

the inspector

Laser Defender, now with layers
• We changed the way sprites were rendered by using

sorting layers
• Lets us draw sprites on top of each other

independently of distance from camera
• Completely separate an independent from normal

Layers, which are used for physics

?
Score, Sounds and Sprite Order

Polishing the menu system I

Polishing the menu system I
• Replacing the menu style
• Passing the score to the ends

Change the style of the menu system
• Use a custom Font & colours
• Make sure to change the hover colours to match

Pass the score to the final scene
• Change the ScoreKeeper to static methods.
• Display the score in the end Scene.
• Make sure we call ScoreKeeper.Reset()

Polishing the menu system I
• Replacing the menu style
• Passing the score to the end scene

Polishing the menu system II

Polishing the menu system II
• Adding our own music to the game
• Adding a background starfield

Adding atmospheric music
• Found on http://opengameart.org
• We use Clearside’s (http://clearsidemusic.com)

music: http://opengameart.org/users/clearside
licensed under Creative Commons

http://opengameart.org
http://clearsidemusic.com
http://opengameart.org/users/clearside

Changing the music on scene load
• Want different music on menu and scene
• Add music to music player, then use
OnLevelWasLoaded() to check when it’s

appropriate to play which music track

Add a starfield effect to the menu
• Use Particle Systems to give the impression the

player is flying through space in the main menu
• Quick and easy option is to copy the Particle

System from the Game scene

Menu System Ready to go Chief!
• We now have a musical menu :)
• We’re showing off some particle effects as soon

as the game is loaded
• Nice priming for the game itself

?
End of Section Quiz

Improving the player animation

Improving the player animation
• Use triggers for the animator
• Give player visual feedback on their key presses
• Create a better Idle animation

improving the enemy animations

Improving the enemy animations
• Enemies in formation should not be static
• Add firing animation to warn the player
• Enable thrusters when arriving
• Disable firing until in formation
• Add an animation to the formation to make it more

exciting

Improving the projectile animations

Improving the projectile animations
• Explosions agains ships look nicer
• Create an explosion prefab and instantiate before

projectile death
• Add to right layer so it renders above ships

Improve the other projectile
• But do something else.
• Use a different explosion using a Particle System
• Add sound to match the effect

Make it yours and share

Make it yours and Share
• Make it yours!
• Add different enemy types
• We use a fraction of the sprites bundled - Use more
• Add asteroids that hurt enemies and player alike
• Let the player take a few hits and change the sprite to show the

damage, ditto for enemies
• Add loot drop from dead enemies - Health pickups?

Unity 5 & Tweaks

In this video…
• Checking in Unity 5.
• Parenting spawned projectiles to parent object.

Recap & What’s Next

Recap & What’s Next
• New in your toolkit
• Trigger Colliders
• Sprite Animations
• Particle Systems
• Physics Layers
• Sorting Layers

